二进制与BCD码之间的转换

作者:佚名    更新日期:2025-06-21

一般来说,默认的BCD码是8421码,也就是说,使用4位二进制数来表示10位0-9的1位十进制数。从左到右的重量是8,4,2,1。

以十进制37为例,进行转换:

3=2+1=(8421码)0011,7=4+2+1=(8421码)0111。

所以37转换成8421码为0011 0111。

扩展资料:

BCD码使用四位来存储十进制数,这使得二进制和十进制之间的转换很快,这种编码技术最常用于会计系统的设计,因为会计系统通常需要精确地计算一长串数字。

与一般的浮点计数方法相比,BCD码不仅可以节省数值精度,而且可以节省浮点运算时间,此外,BCD编码也常用于其他需要高精度的计算。

BCD码的最高二进制数是符号位,负数的符号位是1,正数是0,16位BCD码的范围是-999-+999。

BCD代码没有单独的表示,而是借用了十六进制表示,因此很容易混淆,一般来说,有两种判断方法:

1、看看数据的来源和目的,BCD码通常用于输入和输出,例如,来自拨号开关的数据是BCD码,它被发送到电梯层的解码芯片。

2、请参阅手册,例如,数据类型“日期和时间”中的日期和时间值是BCD代码,计数器的预设值PV和当前计数值CV BCD是BCD代码。

参考资料来源:

百度百科-BCD码

百度百科-8421编码



定义:用4位二进制数来表示1位十进制数中的0~9这10个数码,简称BCD码
即BCD代码。Binary-Coded Decimal‎,简称BCD,称BCD码或二-十进制代码,亦称二进码十进数。是一种二进制的数字编码形式,用二进制编码的十进制代码。这种编码形式利用了四个位元来储存一个十进制的数码,使二进制和十进制之间的转换得以快捷的进行。这种编码技巧,最常用于会计系统的设计里,因为会计制度经常需要对很长的数字串作准确的计算。相对于一般的浮点式记数法,采用BCD码,既可保存数值的精确度,又可免却使电脑作浮点运算时所耗费的时间。此外,对于其他需要高精确度的计算,BCD编码亦很常用。
由于十进制数共有0、1、2、……、9十个数码,因此,至少需要4位二进制码来表示1位十进制数。4位二进制码共有2^4=16种码组,在这16种代码中,可以任选10种来表示10个十进制数码,共有N=16!/(16-10)!约等于2.9乘以10的10次方种方案。常用的BCD代码列于末。
常用BCD编码方式
最常用的BCD编码,就是使用"0"至"9"这十个数值的二进码来表示。这种编码方式,在中国大陆称之为“8421码”。除此以外,对应不同需求,各人亦开发了不同的编码方法,以适应不同的需求。这些编码,大致可以分成有权码和无权码两种:
有权BCD码,如:8421(最常用)、2421、5421…
无权BCD码,如:余3码、格雷码…
以下为三种常见的BCD编码的比较。
十进数 8421-BCD码 余3-BCD码 2421-A码
(M10) D C B A C3 C2 C1 C0 a3 a2 a1 a0
0 0 0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 1
2 0 0 1 0 0 1 0 1 0 0 1 0
3 0 0 1 1 0 1 1 0 0 0 1 1
4 0 1 0 0 0 1 1 1 0 1 0 0
5 0 1 0 1 1 0 0 0 0 1 0 1
6 0 1 1 0 1 0 0 1 0 1 1 0
7 0 1 1 1 1 0 1 0 0 1 1 1
8 1 0 0 0 1 0 1 1 1 1 1 0
9 1 0 0 1 1 1 0 0 1 1 1 1
常用BCD码
十进制数 8421码 5421码 2421码 余3码 余3循环码
0 0000 0000 0000 0011 0010
1 0001 0001 0001 0100 0110
2 0010 0010 0010 0101 0111
3 0011 0011 0011 0110 0101
4 0100 0100 0100 0111 0100
5 0101 1000 1011 1000 1100
6 0110 1001 1100 1001 1101
7 0111 1010 1101 1010 1111
8 1000 1011 1110 1011 1110
9 1001 1100 1111 1100 1010
-----------------------
特点:
8421编码直观,好理解。
5421码和2421码中大于5的数字都是高位为1,5以下的高位为0。
余3码是8421码加上3,有上溢出和下溢出的空间。
格雷码相邻2个数有三位相同,只有一位不同。
————————————————————
什么是BCD码2006-3-19 13:24:45
bcd码也叫8421码就是将十进制的数以8421的形式展开成二进制,大家知道十进制是0~9十个数组成,着十个数每个数都有自己的8421码:
0=0000
1=0001
2=0010
3=0011
4=0100
5=0101
6=0110
7=0111
8=1000
9=1001
举个例子:
321的8421码就是
3 2 1
0011 0010 0001
原因:0011=8x0+4x0+1x2+1x1=3 0010=8x0+4x0+2x1+1x0=2. 0001=8x0+4x0+2x0+1x1=1
具体:
bcd码是四位二进制码, 也就是将十进制的数字转化为二进制, 但是和普通的转化有一点不同, 每一个十进制的数字0-9都对应着一个四位的二进制码,对应关系如下: 十进制0 对应 二进制0000 ;十进制1 对应二进制0001 ....... 9 1001 接下来的10就有两个上述的码来表示 10 表示为00010000 也就是BCD码是遇见1001就产生进位,不象普通的二进制码,到1111才产生进位10000
举例:
某二进制无符号数11101010,转换为三位非压缩BCD数,按百位、十位和个位的顺序表示,应为<U>__C</U>__。
A.00000001 00000011 00000111 B. 00000011 00000001 00000111
C.00000010 00000011 00000100 D. 00000011 00000001 00001001
解:(1)11101010转换为十进制:234
(2)按百位、十位和个位的顺序表示,应为<U>__C</U>__。
附注:压缩BCD码与非压缩BCD码的区别—— 压缩BCD码的每一位用4位二进制表示,一个字节表示两位十进制数。例如10010110B表示十进制数96D;非压缩BCD码用1个字节表示一位十进制数,高四位总是0000,低4位的0000~1001表示0~9.例如00001000B表示十进制数8.

二进制转换成 8421BCD 码?

可以通过如下电路,实现转换,并且显示:



二进制与 BCD 码之间的转换

--------------

这题目,就属于没头没脑了。

二进制,有许多种不同的二进制数。

BCD 码,也有许多种。

你究竟想要把什么换算成什么? 未知。

参考上图吧。





bcd码怎样转换为二进制~

二进制编码的十进制数,简称BCD码(Binarycoded Decimal). 这种方法是用4位二进制码的组合代表十进制数的0,1,2,3,4,5,6 ,7,8,9 十个数符。4位二进制数码有16种组合,原则上可任选其中的10种作为代码,分别代表十进制中的0,1,2,3,4,5,6,7,8,9 这十个数符。最常用的BCD码称为8421BCD码,8.4.2.1 分别是4位二进数的位取值。 点击此处将给出十进制数和8421BCD编码的对应关系表。
1、BCD码与十进制数的转换
BCD码与十进制数的转换.关系直观,相互转换也很简单,将十进制数75.4转换为BCD码如:
75.4=(0111 (0101.0100)BCD 若将BCD码1000 0101.0101转换为十进制数如: (1000 0101.0101)BCD=85.5
注意:同一个8位二进制代码表示的数,当认为它表示的是二进制数和认为它表示的是二进制编码的十进制数时,数值是不相同的。
例如:00011000,当把它视为二进制数时,其值为24;但作为2位BCD码时, 其值为18。
又例如00011100,如将其视为二进制数,其值为28,但不能当成BCD码,因为在8421BCD码中,它是个非法编码 .
2、BCD码的格式
计算机中的BCD码,经常使用的有两种格式,即分离BCD码,组合BCD码。
所谓分离BCD码,即用一个字节的低四位编码表示十进制数的一位,例如数82的存放格式为:
_ _ _1 0 0 0 _ _ _ _0 0 1 0 其中_表示无关值。
组合BCD码,是将两位十进制数,存放在一个字节中,例82的存放格式是1000 0010
3、BCD码的加减运算
由于编码是将每个十进制数用一组4位二进制数来表示,因此,若将这种BCD码直接交计算机去运算,由于
计算机总是把数当作二进制数来运算,所以结果可能会出错。例:用BCD码求38+49。
解决的办法是对二进制加法运算的结果采用"加6修正,这种修正称为BCD调整。即将二进制加法运算的结果修正为BCD码加法运算的结果,两个两位BCD数相加时,对二进制加法运算结果采用修正规则进行修正。修正规则:
(1)如果任何两个对应位BCD数相加的结果向高一位无进位,若得到的结果小于或等于9,则该不需修正;若得到的结果大于9且小于16时,该位进行加6修正。
(2)如果任何两个对应位BCD数相加的结果向高一位有进位时(即结果大于或等于16),该位进行加6修正.
(3)低位修正结果使高位大于9时,高位进行加6修正。
下面通过例题验证上述规则的正确性。
用BCD码求35+21 BCD码求25+37 用BCD码求38+49 用BCD码求42+95
用BCD码求91+83 用BCD码求94+7 用BCD码求76+45
两个组合BCD码进行减法运算时,当低位向高位有借位时,由于"借一作十六"与"借一作十"的差别,将比正确的结果多6,所以有借位时,可采用"减6修正法"来修正.两个BCD码进行加减时,先按二进制加减指令进行运算,再对结果用BCD调整指令进行调整,就可得到正确的十进制运算结果。 实际上,计算机中既有组合BCD数的调整指令,也有分离BCD数的调整指令。另外,BCD码的加减运算,也可以在运算前由程序先变换成二进制数,然后由计算机对二进制数运算处理,运算以后再将二进制数结果由程序转换为BCD码。

二进制数调整BCD码的方法是将二进制码左移8次,每次移位后都检查低四位LSD+3是否大于7,如是则加3,否则不加,高4位MSD作同样处理。
二进制的1111,即2#1111 ,等于10#的15。而BCD#2#1111却是一个非法数据,因为BCD码只能表示十进制的0-9之间的数,这一-串2#1111还是等于10#15。
因为BCD码的定义就是用四位二进制数表示一位0-9之间的十进制数。如果是BCD#15的话,那么可以翻译为2# 0001 0101 ,这样十进制值就为21。


扩展资料
BCD码最主要的特性就是用4位二进制数表示一位0-9之间的十进制数。所以,通俗的来说的话,BCD码也是二进制数,BCD码不过是二进制数的另外一种解读方式罢了。
BCD码是十进制数,而运算器对数据做加减运算时,都是按二进制运算规则进行处理的。这样,当将 BCD码传送给运算器进行运算时,其结果需要修正。
修正的规则是:当两个BCD码相加,如果和等于或小于 1001(即十进制数9),不需要修正;如果相加之和在 1010 到1111(即十六进制数 0AH~0FH)之间,则需加 6 进行修正;如果相加时,本位产生了进位,也需加 6 进行修正。
参考资料来源:百度百科-BCD码
参考资料来源:百度百科-二进制